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Heavy metal contaminants in the soil will have a direct effect on 
human life. The spatial distribution of naturally occurring heavy 
metals is highly heterogeneous and significantly increased 
concentrations may be present in the soil at certain locations. 
Heavy metals in areas of high concentration can be distributed to 
other areas by surface runoff, groundwater flow, weathering and 
atmospheric cycles (eg wind, sea salt spray, volcanic eruptions, 
deposition by rivers). More and more people are now using a 
combination of geographic information science (GIS) with 
geostatistical statistical analysis techniques to examine the 
spatial distribution of heavy metals in soils on a regional scale. 
The most widely used geostatistical methods are the Inverse 
Distance Weighted, Kriging, and Spatial Autocorrelation 
methods as well as other methods. This review paper will explain 
clearly the source of the presence of heavy metals in soil, 
geostatistical methods that are often used, as well as case studies 
on the use of geostatistics for the distribution of heavy metals. 
The use of geostatistical models allows us to accurately assess 
the relationship between the spatial distribution of heavy metals 
and other parameters in a map. 
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INTRODUCTION 

 
Heavy metal contaminants in the soil will be a very serious problem because it takes 

a long time to repair and restore soil conditions to normal (Handayanto, Nuraini, 

Muddarisna, Syam, & Fiqri, 2017). Examining these uncertainties is essential for designing 

and implementing risk mitigation strategies, and only focusing on reducing soil 
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concentrations when deemed necessary. Statistical analysis has been used across various 

disciplinary boundaries to address soil contamination problems, including geoscience, soil 

science, atmospheric studies, environmental engineering, chemometrics (Gholizadeh, 

Saberioon, Ben-Dor, & Borůvka, 2018). 

Heavy metal contamination in soil has become a serious problem globally (Han et 

al., 2020). A number of hazardous heavy metals can enter the human body from 

contaminated soil through exposure routes such as direct or indirect consumption, 

inhalation and skin contact which will potentially result in human health effects (Changfeng 

Li et al., 2019). Heavy metals can also show ecotoxicity which causes hampered ecological 

health in addition to bioaccumulation in the food chain (Shahid et al., 2020). 

Judging from the dangers posed by heavy metals if they accumulate in soil and 

sediment, in this case an analysis of the level of heavy metal pollution on soil and sediment 

quality must be carried out, namely an analysis of soil and sediment quality based on heavy 

metal content data using several indicators, which can be grouped into a single index (Niu 

et al., 2020). Single index is an indicator used to calculate contamination of a single metal 

(only one heavy metal) by calculation (contamination factor) or contamination factor 

(Werdianti, 2018). The heavy metals that have been studied most intensively in the 

publications reviewed include Pb, Zn, Cu, Ni, Cr, and Cd, listed in descending order of 

frequency. 

To solve this problem, the fate and transport of heavy metals in soil, as well as 

remediation of contaminated soil, have been studied intensively. It is also very important 

to be able to strongly distinguish the spatial distribution of heavy metals in soils on a 

regional scale, to enable a sound human and ecological risk assessment, and to implement 

efficient pollution mitigation measures where necessary. Techniques such as geostatistics 

have an important role in this task. Several specific challenges exist in overcoming heavy 

metal contamination of soil (Shi et al., 2018): i) heavy metals cannot be degraded and will 

often naturally accumulate in the soil ii) they cause a wide range of health effects, and 

health risks are complicated by oxidation states and associated differences in bioavailability 

(Rahman & Singh, 2019); iii) there are many widespread sources of heavy metal 

contamination. Understanding heavy metal concentrations on a regional scale is very 

relevant for policy makers. Regional soil studies help guide action in combating the 

pollutant link – managing risk rather than molecules. It is important to understand all the 

uncertainties regarding contaminant concentration, shape, spatial distribution and temporal 

changes. 

In recent years, more and more studies have used integrated geographic formation 

systems (GIS) and multivariate analysis for regional soil quality assessments. This is partly 

due to the use of specialized software that can handle the large spatial data sets presented 

in GIS. However, many statistical techniques fail to recognize the role of spatial correlation. 

GIS and GIS-based geostatistics have proven to be powerful tools in studying soil 

contamination and very useful tools for understanding background levels of heavy metals 

in soils (Hou, O’Connor, Nathanail, Tian, & Ma, 2017). This paper review aims to clearly 

dissect the source of the presence of heavy metals in soil, geostatistical methods that are 

often used to determine the distribution of heavy metal contaminants, as well as case studies 

of the use of geostatistics for the distribution of heavy metals in other countries. 

 

RESEARCH METHODS 

 
The method used in this research is literature study. Activities to collect information 

relevant to the topic or problem that is the object of research. This information can be 

obtained from books, journals, proceedings as well as writings related to the research from 
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the literature review so as to make writings on the Analysis of Distribution of Heavy Metal 

Contaminants in Soil Using Geostatistical Methods; Paper Review. 

 

RESULTS AND DISCUSSION 

 
1. Source of Heavy Metal Pollution in Soil 

Heavy metals naturally exist in the earth's crust and surface soil (Esmaeilzadeh et 

al., 2019). The spatial distribution of naturally occurring heavy metals is highly 

heterogeneous and significantly increased concentrations may be present in the soil at 

certain locations. Heavy metals in areas of high concentration can be distributed to other 

areas by surface runoff, groundwater flow, weathering and atmospheric cycles (e.g. wind, 

sea salt spray, volcanic eruptions, deposition by rivers. Typical anthropogenic sources of 

heavy metal contamination in urban soils include exhaust vehicles, sewage, sewage, 

industrial emissions.Increased concentrations of heavy metals in rural soils usually come 

from impurities in agrochemicals such as application of pesticides and fertilizers, irrigation 

with contaminated water, surface runoff from local industrial facilities, extraction of 

mineral ores, and subsequent disposal of waste , road dust, sewage sludge, sewage and 

livestock manure, and atmospheric deposition. Soil heavy metal pollution is usually studied 

on a regional scale or on a site specific basis. On a regional scale (usually ranging from 

about 10 km2 to 10,000 km2), investigations are carried out to set geok background level 

chemistry, source tracking, and public health protection (Chen, Zhou, Gao, & Hu, 2015). 

Many regional soil quality studies have been carried out, but only in the last two decades 

have researchers applied a GIS-based approach to geochemical interpretation of soil data. 

At site-specific scales (typically ranging from 0.01 km2 to 10 km2), investigators typically 

aim to determine the spatial level, concentration, and fate and transport of contamination 

to assess risks to human health and ecological systems and to identify remediation 

alternatives (Wu et al., 2015). Differences between regional and site-specific assessments 

were also found in the depth, method, and density of sampling. 

 

2. GIS and Geostatistical Methods 

GIS was originally developed as a tool for storage, retrieval and display of 

geographic information, and was later enhanced for spatial analysis (Fotheringham & 

Rogerson, 2013). It has been widely used in soil-related research fields, such as precision 

agriculture, engineering geology, soil erosion, and land degradation. Various spatial 

interpolators were used, including the Inverse Distance Weighted (IDW) Method. 

Geostatistical methods are used in GIS to estimate unknown soil properties between known 

sampling locations. Two of the most commonly used methods are kriging and conditional 

simulation. Both methods calculate the value of land properties based on the weighted 

values assigned to the sample values at the nearest location. The following subsections 

provide a brief description of the basics of spatial autocorrelation and the most commonly 

used spatial interpolators. 

- Kriging 

The Kriging geostatistical technique was the most widely used interpolation 

approach among the studies reviewed, with 20 of 29 studies explicitly indicating that they 

used kriging. Kriging is derived from Regional Variable Theory and was first introduced 

to the GIS field in the 1990s. Unlike IDW and some other interpolation methods which 

treat soil properties at unsampled locations as a specific mathematical function of 

continuous spatial variables, the kriging method is based on a stochastic spatial variation 

model. 
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The underlying assumption is that soil properties behave as intrinsically stationary 

regionalized random variables. Therefore, the kriging method can be used to estimate 

confidence intervals for derived values at unsampled locations. The general equation for 

kriging is explained as follows: 

……. I 

where z(B) is the estimate over the ground area and li is the weight, which amounts 

to one to ensure that there is no bias and, subject to this, is chosen to minimize the variance 

of the estimate. The accuracy of kriging is affected by the variability and spatial structure 

of the data, and the choice of variogram modeling parameters including the variogram 

shape, range, threshold, and nugget value and search radius, and a number of other 

measurements used in the calculations show that lognormal ordinary kriging can improve 

estimation precision compared to ordinary kriging. This is particularly relevant for heavy 

earth metals because the data will often display a log-normal distribution function. The 

Kriging method invented by the Directorate General of Daniel Gerhardus Krige which was 

inaugurated in 1960 by an engineer from France, Georges Matheron, is a geostatistical 

method used to estimate the value of a point or block as a linear combination of sample 

values located around the point to be estimated. . The kriging weight is obtained from the 

minimum variance estimation result by expanding the use of the semivariogram. The 

kriging estimator is an unbiased estimator and the sum of all weights is one. This weight is 

used to estimate the value of thickness, height, grade or other variables (Bargawa, Nugroho, 

Hariyanto, Lusantono, & Bramida, 2020). In its development, many kriging methods have 

been used to solve various cases in geostatistical data, for example, there is a sampled 

mineral content that does not have a certain trend. The kriging method that is suitable for 

solving this case is ordinary kriging because this method can be used when the population 

mean is unknown (Bargawa, 2020). 

- IDW Interpolation 

The Inverse Distance Weighted (IDW) method has been used in several regional soil 

quality survey studies that integrate GIS with multivariate statistical analysis (Dongqing 

Li, Huang, Guo, & Guo, 2015). This method is one of the most frequently used spatial 

interpolation methods because of its fast implementation, ease of use, and straightforward 

interpretation. The general equation for IDW is described by the following equation: 

 

……II 

where zx,y is the point to be estimated, zi represents the control value for the i-th 

sample point, dx,y,i is the distance between zx,y, and zi, and b is the user-defined exponent. 

This weighing strategy assigns more weight to spatially close points than distant points 

based on the reciprocal of the distance to a power, which conforms to logical intuition. The 

accuracy of the IDW can be increased by wisely choosing the optimal number of 

surrounding points (n) and exponent value (b) to produce optimal agreement between the 

measured and estimated data. Its biggest drawback is that it is not based on a specific spatial 

correlation model for the parameters studied, while, as discussed above, spatial 

autocorrelation often exists and can be used to provide better interpolations. 

- Spatial Autocorrelation 

Spatial autocorrelation refers to the lack of independence between pairs of 

observations at a given distance in space, i.e. the similarity between samples for a particular 

attribute variable as a function of spatial distance. In the early days of GIS research, spatial 
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autocorrelation was treated as a problem requiring correction rather than an inherent 

property of spatial data. However, researchers have found that spatial autocorrelation is 

ubiquitous, occurring on spatial scales from micrometers to hundreds of kilometers, for 

reasons ranging from external environmental factors to intrinsic dispersion mechanisms. 

According to Tobler's First Law of Geography, things that are near are more closely related 

than things that are far away (Waters, 2017). To obtain values for a given attribute variable 

in the area between the observed samples, spatial autocorrelation needs to be taken into 

account. 

- Other Methods 

Various other geostatistical methods have been used for spatial prediction of soil 

properties. Keskin & Grunwald found an inverse relationship between the accuracy of the 

Kriging Regression model and variations in soil properties in the original dataset. A new 

modified RK method is proposed for further investigation to predict soil properties and 

classes (Keskin & Grunwald, 2018). Kim et al., used co-kriging with the aim of reducing 

the economic costs of heavy metal sampling (Kim et al., 2019). They achieved this by 

measuring the soil cation exchange capacity (CEC) as a covariate, which is easier and 

cheaper to measure than the Cu, Zn, and Cr determinants of concern. It should be noted 

that the simple overlay method was used in most of the studies reviewed, although it is not 

considered a geostatistical method alone. 

 

3. Geostatistical Use Case Study 

The following cases are the use of Geostatistical Methods in an area to determine the 

level of distribution of heavy metals 

The Use of Geostatistical Models to Determine the Distribution of Mercury in Soil 

in Former Mining Areas: Mount Karczówka., Mount Miedzianka., and Rudki (Central-

South Poland) 

The study, conducted by (Dołęgowska & Michalik, 2019), evaluated metal 

concentrations in the post-mining soil of Mount Karczówka, Mount Miedzianka, and Rudki 

for the assessment of pollution levels and to make further decisions on the actions to be 

taken. The heterogeneous and special character of this area, makes this assessment focus 

on the anthropogenic and geogenic sources of mercury that have been identified in the three 

post-mining areas using an integrated map of the spatial distribution of mercury, calculated 

geochemical factors (BG, LEF), and the results of cluster analysis in the soil due to 

exposure mining impact. The use of combined geostatistical models confirms a direct 

relationship between mercury content and ex-mining operations. We document that 

although mining activity ceased in the mid-twentieth century and even in the case of the 

Rudkin where reclamation work has been carried out, this correlation is still visible. The 

highest mean mercury concentration was recorded in soil samples from Miedzianka Mt. 

(0.501 mg kg−1). Very high enrichment in this metal (20 LEF < 40) was also reported at 

one location from this area as a result of the occurrence of Hg-rich copper sulphide. Due to 

the lack of mercury minerals in the soil of Karczówka Mt. and Rudki, the burning of fossil 

fuels and other emitters (housing and local roads) are classified as the main sources of this 

element. The correlation between mercury content and history of mining operations can be 

explained by the presence of clay minerals and Fe/Mn oxides and hydroxides which are 

scavengers of atmospheric mercury. The results of multivariate analyzes performed for 

mercury (FA) and non-mercuric (CA) biased data sets emphasize the association between 

the presence of other trace metals and mercury. The use of a unified geostatistical model 

which is a combination of multivariate statistics and geostatistical parameters presented by 

GIS allows us to accurately assess the relationship between the spatial distribution of 

mercury and other parameters in small-scale maps. 
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Figure 1. Map of spatial distribution of mercury integrated with geochemical factors 

a. Mt. Miedzianka, b. Mt. Karczówka, c. Rudki 

Geostatistical Modeling and Characteristics of Contaminants and Precious Metals 

from Cu–Au Tailings Dam Abandoned In Taltal (Chile) 

Research conducted by (Tripodi, Rueda, Céspedes, Vega, & Gómez, 2019) in the 

city of Taltal, located on the northern coast of Chile, with central coordinates S 25° 23 '52” 

and W 70° 28′ 35 merupakan, is an important area for small-scale mining. Depending on 

the price of the metal, the population shifts between mining and fishing. From their 

research, it was found that the main copper minerals detected were chrysocolla, atacamite, 

tenorite, and chalcopyrite. The gangue mineralogy is dominated by the presence of quartz, 

feldspar, magnetite, and clay. The particle sizes for S1 and S2 mainly correspond to the 

clay and silt categories (P80 66.4 m S1 and 46.8 m S2). The degree of release revealed the 

presence of degrees of occlusion for the different minerals despite the fine particle size. 

The presence of copper in both tailings composites was mainly associated with oxide and 

oxidized type minerals (70% for S1 and 41% for S2). Based on the type of mineral, the 

main Cu content in the S1 composite sample was atacamite (31.46%) and chalcopyrite 

(29.66%). For S2 the main copper mineral is chalcopyrite (46.65%). Arsenic, mercury and 

copper are the detected elements with the greatest potential for contamination. More than 

90% of the samples exceed Finnish standards. Tailings can have economic added value 

because they contain significant copper (0.27% S1, 0.48% S2 average) and gold (0.26 ppm 

S1, 0.53 ppm S2 average).
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Figure 2. Element distribution according to geostatistical modeling for: A. Copper, 

B. Mercury, C. Zinc, D. Lead, E. Gold and F. arsenic. The left box shows the concentration 

range in ppm. The result of S1 is the one from the left side, the right side depicts the graph 

for tailings dam S2. 

In addition, the early presence of different rare earth piles reported in a timely 

manner should be considered. The line of open interest as a result of this research in terms 

of contamination and reprocessing, indicates the need for further research aimed at 

providing additional details in the real contamination problems that can be attributed to the 

detected metal and/or evaluation of the beneficiation of metallurgical options for value-

added metals. The coefficient of variance and the geostatistical model show the differences 

in the level of dispersion found. In general, moderate or high levels of variability, 

dispersion and heterogeneity were found for the two tailings. In particular, the variability 

increased from the low, intermediate values of Zn for As, Cu, Ag, Pb to the high values 

identified for Hg. The block model allows estimates of total material quantities of 8400 

tonnes for S2 and 39794 tonnes for S1. The low concentration and distribution of the 

contents requires that in order to find out if there are additional benefits, tailings deposits 

must be considered as a whole. 

CONCLUSION 

 

Increased concentrations of heavy metals in soil usually come from impurities in 

agrochemicals such as application of pesticides and fertilizers, irrigation with contaminated 

water, surface runoff from local industrial facilities, extraction of mineral ores, and disposal 

of sewage, road dust, sewage sludge, sewage and sewage livestock, and atmospheric 

deposition. Soil heavy metal pollution is usually studied in scale areas or based on specific 

locations. To determine the distribution of heavy metals in an area, geostatistical methods 

can be used, the most widely used geostatistical methods are the Inverse Distance 

Weighted, Kriging, and Spatial Autocorrelation methods and other methods. The use of 

geostatistical models allows us to accurately assess the relationship between the spatial 

distribution of heavy metals in soil and other parameters in a map. It is hoped that the next 

literature review will discuss in more detail about each of the renewable geostatistical 

models. 
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